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A non-local formulation, depending on a free spectral parameter, is presented
governing two ideal fluids separated by a free interface and bounded above either
by a free surface or by a rigid lid. This formulation is shown to be related to
the Dirichlet–Neumann operators associated with the two-fluid equations. As an
application, long wave equations are obtained; these include generalizations of the
Benney–Luke and intermediate long wave equations, as well as their higher order
perturbations. Computational studies reveal that both equations possess lump-type
solutions, which indicate the possible existence of fully localized solitary waves in
interfacial fluids with sufficient surface tension.

1. Introduction
In this paper, we present a new integral formulation of two ideal fluids separated

by a free interface and bounded above by a free surface or rigid lid.
In recent years, there has been significant effort towards developing alternative

formulations of the classic two-fluid equations. In Benjamin & Bridges (1997), the
Euler equations governing two fluids separated by a free interface are developed in a
Hamiltonian framework. This work generalizes the Hamiltonian formulation of water
waves pioneered in Zakharov (1968) and extended in Craig & Sulem (1993) (see also
Craig & Groves 1994; Craig, Schanz & Sulem 1997; Craig & Nicholls 2000; and
Craig et al. 2002). In Craig, Guyenne & Kalisch (2005a), a Hamiltonian formulation
of two fluids with a free interface and surface is obtained in terms of the interface
and surface variables using Dirichlet–Neumann operators.

Here we generalize the integral formulation of water waves developed in Ablowitz,
Fokas & Musslimani (2006) to the two-fluid system with a free surface. In particular,
for the free surface problem we derive the following equations for the interface η,
the surface β , q ≡ ϕ(x, η, t), Q ≡ Φ(x, η, t) and P ≡ Φ(x, β + H, t), where ϕ and Φ

denote the bottom and top velocity potentials (see figure 1):∫
R2

eikx cosh(|k|η + |k|h)ηt dx = i

∫
R2

eikx sinh(|k|η + |k|h)

|k| (k · ∇)q dx, (1.1)

∫
R2

eikx sinh(|k|β)βt dx −
∫

R2

eikx sinh(|k|(η − H ))ηt dx

= −i

∫
R2

eikx cosh(|k|(η − H ))

|k| (k · ∇) Q dx + i

∫
R2

eikx cosh(|k|β)

|k| (k · ∇) P dx, (1.2)
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Φ(x, y),    ρ2

y = H + β

y = η
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P = Φ(x, β + H)

Q = Φ (x, η)

q = ϕ (x, η)

ϕ(x, y),   ρ1

Figure 1. Two fluids with two free surfaces.

∫
R2

eikx sinh(|k|(β + H ))βt dx −
∫

R2

eikx sinh(|k|η)ηt dx

= −i

∫
R2

eikx cosh(|k|η)

|k| (k · ∇) Q dx + i

∫
R2

eikx cosh(|k|(β + H ))

|k| (k · ∇) P dx, (1.3)
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1 + |∇η|2

) )

− ρ2
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) )
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)
, (1.4)

Pt +
1

2
|∇P |2 + gβ − (βt + ∇P · ∇β)2

2
(
1 + |∇β|2

) =
σ2

ρ2

∇ ·
(

∇β√
1 + |∇β|2

)
. (1.5)

In (1.1)–(1.5), x = (x1, x2), k = (k1, k2), kx ≡ k · x and the constants g, ρ1, ρ2, σ1 and
σ2 denote gravity, density of the bottom fluid, density of the top fluid and surface
tension at the interface η free surface β + H , respectively. Equations (1.4) and (1.5)
are Bernoulli’s equations, expressed in terms of the interface and surface variables η,
β , q , Q and P . Equations (1.1)–(1.3) depend on a free spectral parameter k, and are
referred to in this paper as the non-local spectral (NSP) equations. In Haut (2008),
the following NSP formulation of the two-fluid problem with a fixed lid is derived
from (1.1)–(1.5):∫

R2

eikx cosh(|k|(η + h))ηt dx = i

∫
R2

eikx sinh(|k|(η + h))

(
k

|k| · ∇
)

q dx,

∫
R2

eikx cosh(|k|(η − H ))ηt dx = i

∫
R2

eikx sinh(|k|(η − H ))

(
k

|k| · ∇
)

Q dx,
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ρ1

(
qt − 1

2
|∇q|2 + gη − (ηt + ∇q · ∇η)2

2(1 + |∇η|2)

)

− ρ2

(
Qt − 1

2
|∇Q|2 + gη − (ηt + ∇Q · ∇η)2

2(1 + |∇η|2)

)
= σ1∇ ·

(
∇η√

1 + |∇η|2

)
.

We note that Fokas (cf. Fokas 2000 and Fokas 2007) has extensively used such
integral formulations in his analysis of partial differential equations.

We show that the NSP equations (1.1)–(1.3) are equivalent to the kinematic
conditions in the classic two-fluid Euler equations. In particular, we derive from
(1.1)–(1.3) the series expansions of the Dirichlet–Neumann operators given in Craig
et al. (2005a). We also use the adjoint properties of the Dirichlet–Neumann operators
to obtain from (1.1)–(1.3) a dual system of non-local equations for the two-fluid
kinematic conditions.

As an application of the NSP formulation, we derive in (2+1) dimensions new
scalar long-wave reductions of two fluids with a free surface or rigid lid. Long-wave
reductions of two-fluid systems with either a free surface or a rigid lid have been
extensively studied (cf. the review Helfrich & Melville 2006). Notable model equations
in the case of a rigid upper lid include the Korteweg–de Vries (KdV) equation
(Benjamin 1966), the Benjamin–Ono (BO) equation (Benjamin 1967 and Ono 1975)
and the intermediate long wave (ILW) equation (Joseph 1977; Kubota, Ko & Dobbs
1978; and Ablowitz & Clarkson 1991). Generalizations of the BO equation include
a (2+1)-dimensional version derived in Ablowitz & Segur (1981) from continuously
stratified fluids using a multiple-scale analysis, and a higher order BO equation derived
in Matsuno (1992, 1994). In Choi & Camassa (1996), Boussinesq-type equations are
obtained in (2+1) dimensions for both the free surface and the rigid lid cases, as
well as a (2+1)-dimensional version of the ILW equation. The (1+1)-dimensional
model equations are extended in Choi & Camassa (1999) under the sole assumption
of long waves, i.e. no small assumption is made on the wave amplitude. In Craig
et al. (2005a), series expansions for Dirichlet–Neumann operators are used to obtain
in (1+1) dimensions higher order long-wave reductions in a variety of asymptotic
regimes. A (1+1)-dimensional Boussinesq-type model is used in Bridges & Donaldson
(2007) to study interfacial solitary waves in the rigid lid case. In Bona, Lannes &
Saut (2008), Boussinesq-type equations are derived and rigorously analysed in (2+1)
dimensions for the rigid lid case.

Here we obtain a new generalization of the (2+1)-dimensional Benney–Luke (BL)
equation (Benney & Luke 1964) for interfacial fluids with a free surface or rigid
lid, which we refer to in this paper as the ILW–BL equation; we also present a
higher order ILW–BL equation. One aim in deriving the ILW–BL equation is the
investigation of fully localized interfacial solitary waves. Such localized solutions
are known to exist for the classical BL equation (see Berger & Milewski 2000 and
Pego & Quintero 1999), and have motivated the existence proof of lump solutions to
the full water wave equations with large enough surface tension (cf. Groves & Sun
2008). One advantage of the ILW–BL equation over Boussinesq-type models is that
the equation is scalar, and the computation of solitary waves can be carried out in
a straightforward way in (2+1) dimensions. In particular, we use a direct iteration
method (cf. Ablowitz & Musslimani 2005) to compute fully localized solutions to the
ILW–BL equation.
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The two dispersion relations resulting from either a free surface or a rigid lid are
qualitatively different in the long-wave regime (Craig et al. 2005a). Specifically, the
dispersion relation resulting from a rigid lid gives one characteristic phase speed; in
contrast, the dispersion relation resulting from a free surface gives, assuming long
waves, characteristic phase speeds that are of different orders of magnitude unless
both the upper and the lower fluids are shallow. This indicates that, while the ILW–BL
equation fully captures the fluid dynamics resulting from a rigid lid, it only describes
the fluid dynamics resulting from a free surface when either special initial conditions
are given, or both the fluids are shallow.

A reduction of the ILW–BL equation gives a (2+1)-dimensional generalization of
the ILW equation, which we refer to in this paper as the ILW–Kadomtsev–Petviashvili
(ILW–KP) equation (see also Choi & Camassa 1999). We also obtain a new higher
order ILW–KP equation, which reduces to a higher order (one-dimensional) ILW
equation (Craig et al. 2005a) and a higher order BO equation (Matsuno 1992, 1994)
upon neglecting y dependence and, in the latter case, taking an infinite bottom layer.
The relationship between the ILW–KP equation and the ILW equation is analogous
to that of the KP equation (Kadomtsev & Petviashvili 1970) and the KdV equation
(Korteweg & deVries 1895). Unlike associated Boussinesq-type or BL-type equations,
the ILW–KP equation has no small parameters in it, and, as such, is of basic
importance. In particular, it is well known that the KP equation possesses rational
solutions with a corresponding linear speed versus amplitude relationship (cf. Ablowitz
& Clarkson 1991). We numerically compute analogous lump-type solutions to the
ILW–KP equation, and show that the resulting speed versus amplitude relationship is
nearly linear. The linearity of the speed–amplitude curve suggests that the ILW–KP
equation could possess some of the remarkable properties exhibited by the KdV, KP,
ILW and BO equations.

2. A non-local spectral reformulation of classic two-fluid equations
2.1. A weak formulation of the classic two-fluid equations

We recall the classic equations governing two ideal fluids separated by a free interface
η and bounded above by a free surface β . It is assumed that the upper fluid is of
density ρ2 and the lower fluid is of density ρ1 > ρ2. The equations are given in terms
of the interface and surface variables, and the velocity potentials ϕ and Φ associated
with the upper and lower fluid domains, respectively:

�ϕ = 0, in −h < y < η, (2.1)

ϕy = 0, on y = −h, (2.2)

ηt + ϕx1
ηx1

+ ϕx2
ηx2

= ϕy, on y = η, (2.3)

�Φ = 0, in η < y < H + β, (2.4)

ηt + Φx1
ηx1

+ Φx2
ηx2

= Φy, on y = η, (2.5)

βt + Φx1
βx1

+ Φx2
βx2

= Φy, on y = H + β. (2.6)

ρ1

(
ϕt +

1

2
|∇ϕ|2 + gη

)
− ρ2

(
Φt +

1

2
|∇Φ|2 + gη

)
= σ1∇ ·

(
∇η√

1 + |∇η|2

)
,

on y = η, (2.7)

Φt +
1

2
|∇Φ|2 + gβ =

σ2

ρ2

∇ ·
(

∇β√
1 + |∇β|2

)
, on y = H + β. (2.8)
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In the previous equations, the constants g, σ1 and σ2 denote gravity and the surface
tensions associated with the interface and surface, respectively. We also assume that
η, β , |∇ϕ| and |∇Φ| vanish as |x| → ∞.

We now obtain a weak formulation of (2.1)–(2.6). Specifically, the weak formulation
consists of finding η, β , q , Q and P such for any suitable functions ψ and Ψ , defined
in the lower fluid domain D(η) and the upper fluid domain D(η, β), and satisfying

�ψ = 0, ψy |y=−h = 0, �Ψ = 0, (2.9)

the following identities hold:∫
R2

(ψ |y=η)ηt dx +

∫
R2

q(ψy − ∇xψ · ∇xη)|y=η dx = 0, (2.10)∫
R2

(Ψ |y=β+H )βt dx −
∫

R2

(
Ψ |y=η

)
ηt dx +

∫
R2

Q(Ψy − ∇xΨ · ∇xη)|y=η dx

−
∫

R2

P (Ψy − ∇xΨ · ∇xβ)|y=β+H dx = 0. (2.11)

Equations (2.10) and (2.11), together with the Bernoulli equations (1.4) and (1.5) from
the introduction, constitute a non-local system of equations describing the two-fluid
system. In § (2.2), we will use a convenient basis to replace (2.10) and (2.11) with
explicit integral equations. In § 2.3, we show that (2.10)–(2.11) and (2.1)–(2.6) are
equivalent formulations of the kinematic conditions.

We now indicate how to derive (2.10) and (2.11) from the classic two-fluid equations
(2.1)–(2.8). Specifically, assume that ψ and Ψ are suitably decaying functions defined
in D(η) and D(η, β), respectively, that satisfy conditions (2.9).

To derive (2.10), apply Green’s identity to ϕ and ψ in the domain D(η) to get

0 =

∫
D(η)

(ϕ (�ψ) − ψ (�ϕ)) dV =

∫
∂D(η)

(ϕ (∇ψ · n) − ψ (∇ϕ · n)) dS = 0, (2.12)

where n is the unit normal, dV is the volume measure, dS is the surface measure and
∂D(η) is the boundary of the bottom fluid. Using

q = ϕ(x, η, t), ηt = ϕy − ∇xϕ · ∇xη, on y = η,

and the decaying boundary conditions in (2.12) yields (2.10), upon simplification.
Similarly, to derive (2.11), apply Green’s identity to Φ and Ψ in D(η, β) to get∫

∂D(η,β)

{Φ (∇Ψ · n) − Ψ (∇Φ · n)} dS = 0, (2.13)

where ∂D(η, β) denotes the surface of the upper fluid domain D(η, β). Using

Q = Φ(x, η, t), P = Φ(x, β + H, t),

ηt = Φy − ∇xΦ · ∇xη, on y = η,

βt = Φy − ∇xΦ · ∇xβ, on y = β + H,

in (2.13) and simplifying gives (2.11).

2.2. Derivation of the non-local spectral equations for two fluids

We derive from (2.10) and (2.11) the NSP equations (1.3)–(1.5) given in the
introduction.
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First, we derive (1.3) from (2.10). To motivate the derivation, recall that the function
ψ occurring in (2.10) satisfies

�ψ(x, y) = 0 ψy(x, −h) = 0. (2.14)

Letting ψ̂ denote the Fourier transform of ψ in the x variable, conditions (2.14) can
be expressed in terms of ψ̂ as

ψ̂yy(k, y) = |k|2ψ̂(k, y), ψ̂y(k, −h) = 0.

The solution to this differential equation is

ψ̂(k, y) = ξ̂ (k) cosh(|k|y + |k|h), (2.15)

where ξ̂ (k) is arbitrary. Reverting back to physical space,

ψ(x, y) =

∫
R2

eikx ξ̂ (k) cosh(|k|y + |k|h) dk. (2.16)

Therefore, any function ψ that satisfies (2.14) is formally a sum of basic functions ψk ,
where

ψk(x, y) = eikx cosh(|k|y + |k|h).

Since (2.10) is linear, it suffices to force (2.10) to hold for the parameterized family of
functions ψk . Putting ψk into (2.10) gives∫

R2

eikx cosh(|k|η + |k|h)ηt dx =

∫
R2

q

(
eikx |k| sinh(|k|η + |k|h)

− ieikx cosh(|k|η + |k|h) (k · ∇) η

)
dx. (2.17)

Finally, using

eikx |k| sinh(|k|η + |k|h)−ieikx cosh(|k|η + |k|h)(k · ∇)η = −i∇ ·
(

eikx sinh(|k|η + |k|h)

|k| k

)
in (2.17) and integrating by parts gives us (1.1), upon noting that the boundary terms
that come from integration by parts are zero when interpreted in the appropriate
distributional sense. Indeed, for any smooth function f (k) with supp(f ) ⊂ (−L, L) ×
(−L, L) (and suppressing t dependence),〈

qeikx kj sinh(|k|η + |k|h)

|k| , f

〉
= q(x)

∫ L

−L

∫ L

−L

eikx kj sinh(|k|η(x) + |k|h)

|k| f (k) dk

= q(x)

∫ L

−L

∫ L

−L

eikx kj sinh(|k|h)

|k| f (k) dk + η(x)q(x)

∫ L

−L

∫ L

−L

eikx kj cosh(ζx,k)

|k| f (k) dk,

where j = 1, 2 and |ζx,k| �
√

2L|η(x)|. The first integral in the second line of the
previous equation goes to zero as |x| → ∞, by the Riemann–Lebesgue lemma. The
second integral also goes to zero as |x| → ∞, since the integrand is bounded by a
constant and η → 0 as |x| → ∞.

We use the same reasoning to derive equations (1.2)–(1.3) from (2.11). Specifically,
it suffices that (2.11) holds for the basic functions

Ψk(x, y) = eikx sinh(|k|y − |k|H ), Ψk(x, y) = sinh(|k|y)eikx .
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Taking Ψk(x, y) = eikx sinh(|k|y − |k|H ) in (2.11), we get that∫
R2

eikx sinh(|k|β)βt dx −
∫

R2

eikx sinh(|k|η − |k|H )ηt dx

= −
∫

R2

Qeikx(|k| cosh(|k|η − |k|H ) − i sinh(|k|η − |k|H ) (k · ∇) η) dx

+

∫
R2

P eikx(|k| cosh(|k|β) − i sinh(|k|β) (k · ∇) β) dx. (2.18)

Simplifying the previous equation gives us (1.2). Similarly, taking Ψk(x, y) =
eikx sinh(|k|y) in (2.11) gives us (1.3).

It will be useful in our subsequent analysis to write (1.1)–(1.3) in operator notation.
To do so, replace k by −k in (1.1)–(1.3) and formally take the inverse Fourier
transform to get∫

R2

∫
R2

eik(x−x ′) cosh(|k|η + |k|h)ηt dx ′ dk

= −i

∫
R2

∫
R2

eik(x−x ′) sinh(|k|η + |k|h)

(
k1

|k|qx ′
1
+

k2

|k|qx ′
2

)
dx ′ dk,∫

R2

∫
R2

eik(x−x ′) sinh(|k|β)βt dx ′ dk −
∫

R2

∫
R2

eik(x−x ′) sinh(|k|(η − H ))ηt dx ′ dk

=

∫
R2

∫
R2

eik(x−x ′) cosh(|k|(η − H ))

(
i
k1

|k|Qx ′
1
+ i

k2

|k|Qx ′
2

)
dx ′ dk

−
∫

R2

eik(x−x ′) cosh(|k|β)

(
i
k1

|k|Px ′
1
+ i

k2

|k|Px ′
2

)
dx ′ dk,∫

R2

∫
R2

eik(x−x ′) sinh(|k|(β + H ))βt dx ′ dk −
∫

R2

∫
R2

eik(x−x ′) sinh(|k|η)ηt dx ′ dk

=

∫
R2

∫
R2

eik(x−x ′) cosh(|k|η)

(
i
k1

|k|Qx ′
1
+ i

k2

|k|Qx ′
2

)
dx ′ dk

−
∫

R2

∫
R2

eik(x−x ′) cosh(|k|(β(x ′, t) + H ))

(
i
k1

|k|Px ′
1
+ i

k2

|k|Px ′
2

)
dx ′ dk.

In operator notation, the previous equations become

A(η)ηt = B(η)q, (2.19)(
A11(η) A12(β)

A21(η) A22(β)

) (
ηt

βt

)
=

(
B11(η) B12(β)

B21(η) B22(β)

)(
Q

P

)
. (2.20)

2.3. Equivalence of classic and weak formulations

In this section, we show that the weak formulation and equations (2.1)–(2.6) are
equivalent.

To do so, it will be convenient to follow Craig et al. (2005a) and re-express (2.1)–
(2.6) in terms of Dirichlet–Neumann operators acting on the interface and surface
variables. Specifically, (2.1)–(2.3) can be written in terms of the Dirichlet–Neumann
operator G(η) as

ηt = G(η)q ≡ (ϕy − ∇xϕ · ∇η)|y=η, (2.21)
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where ϕ satisfies the Dirichlet problem

�ϕ = 0, for x ∈ R2 and −h < y < η, ϕ(x, η) = q, ϕy(x, −h) = 0.

Similarly, (2.4)–(2.6) can be written in terms of the Dirichlet–Neumann operators
Gij (η, β), i, j = 1, 2, as

ηt = −G11(β, η)Q − G12(β, η)P

≡ (Φ1y − ∇xΦ1 · ∇xη)|y=η + (Φ2y − ∇xΦ2 · ∇xη)|y=η, (2.22)

βt = G21(β, η)Q + G22(β, η)P

≡ (Φ1y − ∇xΦ1 · ∇xβ)|y=β+H + (Φ2y − ∇xΦ2 · ∇xβ)|y=β+H , (2.23)

where Φ1 and Φ2 satisfy the Dirichlet problems

�Φ1 = 0, Φ1(x, η) = Q, Φ1(x, β + H ) = 0.

�Φ2 = 0, Φ2(x, η) = 0, Φ2(x, β + H ) = P.

To show the equivalence of the two formulations, suppose that η, β , q , Q and P

satisfy (2.10) and (2.11). We show that

ηt = −G11(η, β)Q − G12(η, β)P. (2.24)

The other cases are similar.
Fix time t , and let Q̃ be an arbitrary, decaying function. In (2.11), let Ψ solve the

Dirichlet problem

�Ψ = 0 in D(η, β), Ψ (x, η) = Q̃, Ψ (x, β + H ) = 0.

Then (2.11) reduces to∫
R2

Q̃ηt dx =

∫
R2

Q(Ψy −∇xΨ · ∇xη)|y=η dx+

∫
R2

P (Ψy −∇xΨ · ∇xβ)|y=β+H dx. (2.25)

Since

G11(η, β)Q̃ = (−Ψy + ∇xΨ · ∇xη)|y=η,

G21(η, β)Q̃ = (−Ψy + ∇xΨ · ∇xβ)|y=β+H ,

equation (2.25) can be written as∫
R2

Q̃ηt dx = −
∫

R2

QG11(η, β)Q̃ dx −
∫

R2

PG21(η, β)Q̃ dx.

Using the identities

G11(η, β)∗ = G11(η, β), G21(η, β)∗ = G12(η, β),

where ∗ denotes the adjoint (these follow from Green’s identity), the previous equation
implies that ∫

R2

Q̃ (ηt + G11(η, β)Q + G12(η, β)P ) dx = 0.

Since Q̃ is arbitrary, (2.24) follows.

2.4. Dual integral equations

In this section we derive a system of integral equations that are dual to (1.1)–(1.3).
These are similar to an equation used in (Craig et al. 2005b) to analyse water wave
propagation over a variable bottom.
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The dual to (1.1) is given by the coupled system

ηt = −i∇ ·
∫

R2

keik·x sinh(|k|(η + h))

|k| ξ̂ , dk, (2.26)∫
eik·x cosh((η + h)|k|))ξ̂ dk = q. (2.27)

Similarly, the dual to (1.2) and (1.3) is given by the coupled system

ηt = i∇ ·
∫

R2

eik·x cosh(|k|η − |k|H )

|k| ξ̂1 dk − i∇ ·
∫

R2

eik·x cosh(|k|η)

|k| ξ̂2 dk, (2.28)

βt = i∇ ·
∫

R2

eik·x cosh(|k|β)

|k| ξ̂1 dk − ∇ ·
∫

R2

eik·x cosh(|k|(β + H ))

|k| ξ̂2 dk, (2.29)

Q = −
∫

R2

eik·x sinh(|k|(η − H ))ξ̂1 dk +

∫
R2

eik·x sinh(|k|η)ξ̂2 dk, (2.30)

P = −
∫

R2

eik·x sinh(|k|β)ξ̂1 dk +

∫
R2

eik·x sinh(|k|(β + H ))ξ̂2 dk. (2.31)

Equations (2.26)–(2.30) yield an alternative integral formulation of (2.1)–(2.6).
For the derivation, we use that equations (2.19)–(2.20) implicitly define expressions

for the various Dirichlet–Neumann operators appearing in the previous section.
Specifically, using equations (2.21)–(2.23) in (2.19)–(2.20) gives the following implicit
expressions for G(η) and Gij (η, β):

A(η)G(η) = B(η), (2.32)(
A11(η) A12(β)

A21(η) A22(β)

)(−G11(η, β) −G12(η, β)

G21(η, β) G22(η, β)

)
=

(
B11(η) B12(β)

B21(η) B22(β)

)
. (2.33)

Using the relationships

G(η)∗ = G(η), G11(η, β)∗ = G11(η, β),

G22(η, β)∗ = G22(η, β), G12(η, β)∗ = G21(η, β),

we take the adjoint of (2.32) and (2.33) to get

G(η)A(η)∗ = B(η)∗, (2.34)(−G11(η, β) G12(η, β)

−G21(η, β) G22(η, β)

)(
A11(η)∗ A21(β)∗

A12(η)∗ A22(β)∗

)
=

(
B11(η)∗ B21(β)∗

B12(η)∗ B22(β)∗

)
.

After some routine matrix manipulations, the previous matrix equation can be
rewritten as(

−G11(η, β) −G12(η, β)

G21(η, β) G22(η, β)

)(
A11(η)∗ −A21(β)∗

−A12(η)∗ A22(β)∗

)
=

(
B11(η)∗ −B21(β)∗

−B12(η)∗ B22(β)∗

)
.

(2.35)
Equations (2.34) and (2.35) implicitly give expressions for the Dirichlet–Neumann
operators, and lead to the following alternative integral formulation of the two-fluid
system (dual to (2.19) and (2.20)):

ηt = B(η)∗A(η)∗−1
q, (2.36)(

ηt

βt

)
=

(
B11(η)∗ −B21(β)∗

−B12(η)∗ B22(β)∗

)(
A11(η)∗ −A21(β)∗

−A12(η)∗ A22(β)∗

)−1 (
Q

P

)
. (2.37)
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The adjoints occurring in the previous two equations are explicitly given by

A(η)∗ = cosh(η(x)|D| + |D|H ), (2.38)

B(η)∗ = D1 sinh(η(x)|D| + |D|H )
D1

|D| + D2 sinh(η(x)|D| + |D|H )
D1

|D| , (2.39)

A11(η)∗ = −sinh(η(x)|D| − |D|H ), (2.40)

A12(β)∗ = sinh(β(x)|D|), (2.41)

A21(η)∗ = −sinh(η(x)|D|), (2.42)

A22(β)∗ = sinh(β(x)|D| − |D|H ), (2.43)

B11(η)∗ = −D1 cosh(η(x)|D| − |D|H )
D1

|D| − D2 cosh(η(x)|D| − |D|H )
D2

|D| , (2.44)

B12(β)∗ = D1 cosh(β(x)|D|) D1

|D| + D2 cosh(β(x)|D|) D2

|D| , (2.45)

B21(η)∗ = −D1 cosh(η(x)|D|) D1

|D| − D2 cosh(η(x)|D|) D2

|D| , (2.46)

B22(β)∗ = D1 cosh(β(x)|D| + H |D|) D1

|D| + D2 cosh(β(x)|D| + H |D|) D2

|D| , (2.47)

where

D = (D1, D2) = (−i∂x1
, −i∂x1

).

In the expressions for A, B , A∗
ij and B∗

ij , we have used standard pseudo-differential
notation. For example, the action of B∗

11 on a given function f is

(B11(η)∗f )(x) = −i∂x1

∫
R2

eikx cosh(η(x)|k| − |k|H )
k1

|k| f̂ (k) dk

− i∂x2

∫
R2

eikx cosh(η(x)|k| − |k|H )
k2

|k| f̂ (k) dk.

As an example of how we obtained (2.38)–(2.47), we compute A(η)∗. Given suitable
functions f and g,

〈A(η)f, g〉 =

∫
dx g(x)

(∫∫
dk dx ′eik(x−x ′) cosh(|k|(η(x ′) + H ))f (x ′)

)
,∫

dx ′f (x ′)

(∫∫
dk dx eik(x−x ′) cosh(|k|(η(x ′) + H ))g(x)

)
,

∫
dx ′f (x ′)

(∫∫
dk dx eik(x ′−x) cosh(|k|(η(x ′) + H ))g(x)

)
,

∫
dx ′f (x ′)

(∫
dk eikx ′ cosh(|k|(η(x ′) + H ))ĝ(k)

)
,

〈f, A(η)∗g〉.

Employing similar techniques as in Craig et al. (2005a), we re-derive (2.28)–(2.31)
from first principles (the derivation of (2.26)–(2.27) is similar). To do so, first note
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that if η = β = 0, then

Φ(x, y, t) = −
∫

R2

eik·x sinh(|k|(y − H ))

sinh(|k|H )
Q̂(k, t) dk +

∫
R2

eik·x sinh(|k|y)

sinh(|k|H )
P̂ (k, t) dk

satisfies (2.4)–(2.6). In general, we look for a solution Φ of the form

Φ(x, y, t) = −
∫

R2

eik·x sinh(|k|y − |k|H )ξ̂1(k, t) dk +

∫
R2

eik·x sinh(|k|y)ξ̂2(k, t) dk. (2.48)

Then Φ satisfies (2.4)–(2.6) if

Q = −
∫

R2

eik·x sinh(|k|(η − H ))ξ̂1 dk +

∫
R2

eik·x sinh(|k|η)ξ̂2 dk,

P = −
∫

R2

eik·x sinh(|k|β)ξ̂1 dk +

∫
R2

eik·x sinh(|k|(β + H ))ξ̂2 dk.

Using (2.40)–(2.43), this can be written in operator notation as(
ξ1

ξ2

)
=

(
A11(η)∗ −A21(η)∗

−A12(β)∗ A22(β)∗

)−1 (
Q

P

)
(2.49)

With (2.49), we use (2.48) to calculate that

ηt = Φy(x, η + H ) − ∇xΦ(x, η) · ∇xη

= −
∫

R2

eik·x |k| cosh(|k|η − |k|H )ξ̂1 dk +

∫
R2

eik·x |k| cosh(|k|η)ξ̂2 dk

+ i

∫
R2

eik·x (k · ∇xη) sinh(|k|η − |k|H )ξ̂1 dk − i

∫
R2

eik·x (k · ∇xη) sinh(|k|η)ξ̂2(k) dk

= i∇x ·
∫

R2

keik·x cosh(|k|η − |k|H )

|k| ξ̂1 dk − i∇x ·
∫

R2

keik·x cosh(|k|η)

|k| ξ̂2 · k

Similarly,

βt = Φy(x, β + H ) − ∇xΦ(x, β + H ) · ∇xβ

= i∇x ·
∫

R2

keik·x cosh(|k|β(x))

|k| ξ̂1 dk − i∇x ·
∫

R2

k eik · x cosh(|k|(β + H ))

|k| ξ̂2 dk.

Using (2.40)–(2.43), we can write the above two equations as(
ηt

βt

)
=

(
B11(η)∗ −B21(η)∗

−B12(β)∗ B22(β)∗

)(
ξ1

ξ2

)
. (2.50)

Combining (2.49) and (2.50) gives us (2.37).

3. Conservation laws and integral identities for two fluids
In Ablowitz et al. (2006), conservation laws and integral identities for water waves

are derived from the non-local spectral formulation (see Benjamin & Olver 1982 for
a systematic analysis of conservation laws and symmetries of classic water waves).
We now derive the analogous conservation laws and integral identities from the NSP
formulation.
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Specifically, let k → εk in (1.1)–(1.5) and expand in ε. Setting the ε0 coefficient to
zero and taking k2 = 0,

∂t

∫
R2

(
η +

β2

2H
− η2

2H

)
dx +

∫
R2

x1

(
Px1

H
− Qx1

H

)
dx = 0, (3.1)

∂t

∫
R2

(
β +

β2

2H
− η2

2H

)
dx +

∫
R2

x1

(
Px1

H
− Qx1

H

)
dx = 0. (3.2)

Subtracting (3.2) from (3.1) yields the equation

∂t

∫
R2

(η − β) dx = 0, (3.3)

which is conservation of mass in the upper fluid domain.
Similarly, setting to zero the ε1 coefficient coming from (1.1)–(1.5), and taking

k2 = 0,

∂t

∫
R2

x1

(
−η +

η2

2H
− β2

2H

)
dx

+

∫
R2

((
− x1

2

2H
+

β2

2H
− H

6

)
Px1

+

(
x1

2

2H
− η2

2H
− H

3
+ η

)
Qx1

)
dx = 0, (3.4)

∂t

∫
R2

x1

(
−β +

η2

2H
− β2

2H

)
dx

+

∫
R2

((
x1

2

2H
− η2

2H
+

H

6

)
Qx1

+

(
− x1

2

2H
+

β2

2H
+

H

3
+ β

)
Px1

)
dx = 0, (3.5)

Now subtract (3.5) from (3.4) to get

∂t

∫
R2

x1 (β − η) =

∫
R2

((
H

2
+ β

)
Px1

+

(
−η +

H

2

)
Qx1

)
dx. (3.6)

Similarly, setting k2 = 0 in the ε1 coefficient gives us

∂t

∫
R2

x2 (β − η) =

∫
R2

((
H

2
+ β

)
Px2

+

(
−η +

H

2

)
Qx2

)
dx. (3.7)

Equations (3.6)–(3.7) represent the evolution of the center of mass; the right-hand
side is the momentum of the fluid. Analogues of (3.6)–(3.7) are derived in Benjamin
& Bridges (1997) for the case of two infinite fluid layers separated by a free interface.

Finally, setting the ε2 term to zero yields the following virial-type formulae,

∂t

∫
R2

(
xj

2

2
(β − η) − H

4
(β2 + η2) − 1

6
(β3 + η3)

)
=

∫
R2

xj

((
H

2
+ β

)
Pxj

+

(
−η +

H

2

)
Qxj

)
dx, (3.8)

where j = 0, 1. There are no known analogues of (3.8) in the literature.
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4. Long-wave reductions of two fluids and solitary waves
4.1. Non-dimensionalization of NSP equations

We now non-dimensionalize (1.1)–(1.5). To do so, define the non-dimentional variables
x ′, t ′, η′, β ′, q ′, Q′ and P ′ by

x ′
1 =

x1

l
, x ′

2 = γ
x2

l
, t ′ =

√
gH

l
t, aη′ = η, aβ ′ = β,

q ′ =
agHq√

gH
, Q′ =

aglQ√
gH

, P ′ =
aglP√

gH
,

where l is a characteristic wavelength, a is the characteristic wave amplitude and γ is
a non-dimensional parameter. Then (1.1)–(1.5) become, after dropping primes,∫

R2

e−ikx cosh(|k|(μεη + α))ηt dx = −i

∫
R2

eikx sinh(|k|(μεη + α))

|k| (k · ∇)q dx, (4.1)

μ

∫
R2

e−ikx sinh(|k|μεβ)βt dx − μ

∫
R2

eikx sinh(|k|(μεη − μ))ηt dx

= i

∫
R2

eikx cosh(|k|(μεη − μ))

|k| (k · ∇) Q dx − i

∫
R2

e−ikx cosh(|k|μεβ)

|k| (k · ∇) P dx,

(4.2)

μ

∫
R2

e−ikx sinh(|k|(μεβ + μ))βt dx − μ

∫
R2

e−ikx sinh(|k|μεη)ηt dx

= −i

∫
R2

e−ikx cosh(|k|μεη)

|k| (k · ∇) Q dx + i

∫
R2

e−ikx cosh(|k|(μεβ + μ))

|k| (k · ∇) P dx,

(4.3)(
μqt +

1

2
με2|∇q|2 + η − με2 (ηt + με∇q · ∇η)2

2
(
1 + ε2μ2|∇η|2

))

− ρ

(
Qt +

1

2
ε|∇Q|2 + η − με

(ηt + ε∇Q · ∇η)2

2
(
1 + ε2μ2|∇η|2

))
= μ2σ1∇ ·

(
∇η√

1 + ε2μ2|∇η|2

)
,

(4.4)

Pt +
1

2
ε|∇P |2 + β − (βt + ε∇P · ∇β)2

2
(
1 + ε2μ2|∇β|2

) = μ2σ2∇ ·
(

∇β√
1 + ε2μ2|∇β|2

)
. (4.5)

In the previous equations,

∇ =
(
∂x1

, γ ∂x2

)
, k = (k1, γ k2), x = (x1, x2/γ ),

ε =
a

H
μ =

H

l
, α =

h

l
, σ̃1 =

σ1

ρgH 2
, σ̃2 =

σ2

ρgH 2
, ρ =

ρ2

ρ1

.

We assume that μ, and γ 2 are O(1), and that α is O(1) or larger. We initially make
no assumption on the size of ε; this added generality will allow us to derive a (2+1)-
dimensional analogue of the ‘fully nonlinear’ Boussinesq-type equations derived in
Choi & Camassa (1999). We also assume that σ1 and σ2 are of order of O(1/μ),
which will allow us compute lumps to the reduced equations.
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4.2. A Benney–Luke type equation for interfacial fluids with a free surface or rigid lid

In this section, we will derive from (4.1)–(4.5) (interfacial waves with a free surface)
the following BL-type equation for interfacial waves with a free surface:

Qtt − c2
1Qx1x1

− γ 2c2
1Qx2x2

+ ε(2Qx1
Qx1t + QtQx1x1

)

+ μ(−iρc2
1coth(D1α)Qx1x1x1

+ ρ
(
c4
1σ̃2 + σ̃1

)
Qx1x1x1x1

) = 0, (4.6)

where c2
1 = (1 − ρ). We refer to (4.6) as the ILW–BL equation. In Haut (2008), the

following version of (4.6) is derived for interfacial waves with a fixed lid:

Qtt − c2
0Qx1x1

− γ 2c2
0Qx2x2

+ ε(2Qx1
Qx1t + QtQx1x1

)

+ μ

(
−i

c2
0

ρ
coth(D1α)Qx1x1x1

+
σ̃

ρ
Qx1x1x1x1

)
= 0, (4.7)

where c2
0 = (1/ρ − 1) and σ̃ is the non-dimensional surface tension associated with

the interface.
In (4.6), if we make the change of variables

ξ = x1 − c1t, τ = εt, y = x2,

and set γ 2 = μ = ε, we also get, to leading order, the following (2+1)-dimensional
version of the ILW equation (see also Choi & Camassa 1996 for the zero surface
tension case):

2c1wξτ + c2
1wyy + 3c1(wξw)ξ + ic2

1ρ coth(αD1)wξξξ − ρ
(
c4
1σ̃2 + σ̃1

)
wξξξξ , (4.8)

where w = Qξ . We refer to (4.8) as the ILW–KP equation. The following ILW–KP
equation can be derived for the rigid lid case (see Choi & Camassa 1996; Haut 2008):

2c0wξτ + c2
0wyy + 3c0(wξw)ξ + i

c2
0

ρ
coth(αD1)wξξξ − σ̃

ρ
wξξξξ . (4.9)

We now derive (4.6). Expanding (4.1), (4.2), (4.4) and (4.5) in μ and γ 2 and taking
the inverse Fourier transform,

qx1
= i coth(αD1)ηt + o(1), (4.10)

Px1x1
− Qx1x1

+ γ 2
(
Px2x2

− Qx2x2

)
= o(γ 2, μ), (4.11)

(1 − ρ)η − ρQt = μσ̃1ηx1x1
− μqt + ε

ρ

2

(
Q2

x1

)
+ εγ 2 ρ

2

(
Q2

x2

)
+ o(γ 2, μ), (4.12)

Pt + β +
1

2
εP 2

x1
− μσ̃2βx1x1

= o(γ 2, μ). (4.13)

In (4.10), D1 = −i∂x1
. Similarly, multiply (4.2) by cosh(|k|μ), subtract it from (4.3),

and divide by sinh(|k|μ). Expanding the result in μ and γ 2,

ηt = βt + Qx1x1
+ γ 2Qx2x2

+ ε(Px1
βx1

− ηx1
Qx1

+ βPx1x1
− ηQx1x1

) + o(γ 2, μ). (4.14)

Equation (4.6) now follows from (4.10)–(4.14). In detail, recursively solve (4.13) for
β in terms of P :

β = −Pt − 1

2
εP 2

x1
− μσ̃2Px1x1t + o(γ 2, μ, ε). (4.15)

Similarly, from (4.11) we get

Q = P + o(γ 2, μ, ε). (4.16)
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Using (4.15) and (4.16) in (4.14),

ηt = Qx1x1
− Qtt + γ 2Qx2x2

− μσ̃1Qx1x1t t

− ε
(
ηx1

Qx1
+ ηQx1x1

+ 2Qx1
Qx1t + QtQx1x1

)
+ o(γ 2, μ, ε). (4.17)

Now differentiate (4.12) with respect to x1 and use (4.10) to express qx1
in terms of ηt :

(1 − ρ)ηx1
= ρQx1t + μσ̃1ηx1x1x1

− μi coth(αD1)ηtt + ε
ρ

2

(
Q2

x1

)
x1

+ o(ε, μ, γ 2). (4.18)

Finally, differentiate (4.17) and (4.18) with respect to x1 and t , respectively. Equating
the resulting equations for ηx1t and repeatedly using

η = ρ/(1 − ρ)Qt + o(1), ηt = Qx1x1
− Qtt + o(1), Qtt = (1 − ρ)Qx1x1

+ o(1),

gives (4.6), upon simplification.
Carrying out the above procedure to the next order in ε, we also get the following

higher order ILW–BL equation, where T = coth(αD1), x = x1, and y = x2:

Qtt − c2
1Qxx

+ ε
(

− iρc2
1T (Qxxx) − c2

1Qyy + 2QxQxt +
(
c2
1 + ρ

)
QtQxx + ρ

(
σ2c

4
1 + σ1

)
Qxxxx

)
+ ε2

(
5iρT (QxtQxx) + 3iρT (QxQxxt ) + 2iρT (QtQxxx) − 1

2
(ρ − 1)ρT 2(Qxxyy)

− 3

2
iρc2

1T (Qxyy) + ρ(2ρ − 1)c2
1T

2 (Qxxxx) + iρ
(
3ρσ2c

4
1 + (3ρ − 1)σ1

)
T (Qxxxxx)

+ 2QyQyt +
(
c2
1 + ρ

)
QtQyy − iρ (T Qxxt ) Qx − iρ (T QxtQxx) +

3

2

(
c2
1 + ρ

)
Q2

xQxx

−
2ρ

(
σ2c

4
1 + 2σ1

)
Qxx

c2
1

Qxxt + 2ρ
(
σ2c

4
1 + σ1

)
Qxxyy −

ρ
(
3σ2c

4
1 + 4σ1

)
Qxt

c2
1

Qxxx

− ρσ1Qx

c2
1

Qxxxt+
1

6
c2
1

(
(6ρ−3)c2

1 − 3ρ+1
)
Qxxxx−

ρ
(
c2
1+ρ

) (
σ2c

4
1 + σ1

)
Qt

c2
1

Qxxxx

+
ρ2

(
ρσ 2

2 c6
1 − 2σ1σ2c

4
1 − σ 2

1

)
c2
1

Qxxxxxx

)
= O(ε3).

Similarly, here is the higher order ILW–KP equation:

2c1Qξτ + c2
1Qyy + 3c1QξQξξ + iρc2

1T (Qξξξ ) − ρ
(
σ2c

4
1 + σ1

)
Qξξξξ

+ ε
(
5iρc1T (Q2

ξξ ) + 5iρc1T (QξQξξξ ) +
3

2
iρc2

1T (Qξyy) − 1

2
ρc2

1T
2(Qξξyy)

+ (1 − 2ρ)ρc2
1T

2(Qξξξξ ) − iρ
(
3ρσ2c

4
1 + (3ρ − 1)σ1

)
T (Qξξξξξ ) − Qττ

− iρc1(T Qξξξ )Qξ + c1QyyQξ − 2QξQξτ + 2c1QyQξy − iρc1(T Qξξ )Qξξ

− QτQξξ − 3

2
Q2

ξQξξ − 2ρ
(
σ2c

4
1 + σ1

)
Qξξyy −

ρ
(
5σ2c

4
1 + 8σ1

)
Qξξ

c1

Qξξξ

+
1

3
(3ρ2 − 3ρ + 1)c2

1Qξξξξ −
ρ

(
σ2c

4
1 + 2σ1

)
Qξ

c1

Qξξξξ

+
ρ2

(
−ρσ 2

2 c6
1 + 2σ1σ2c

4
1 + σ 2

1

)
c2
1

Qξξξξξξ

)
= O(ε2).



390 T. S. Haut and M. J. Ablowitz

1 2 3 4 5
cx

10

20

30

40

50

M
ax

im
u
m

 a
m

p
li

tu
d
e

Figure 2. The speed versus maximum amplitude relationships for (4.19) and (4.20) when ε =

1/10 and c =(1/
√

2) − cxε, with cx = .5, 1, 1.5, . . . , 5. Lower points correspond to (4.20), while
upper points correspond to (4.19).

The term Qττ in the higher order ILW–KP equation can be asymptotically replaced
by

Qττ = −c1

2

∫ x

−∞
Qyyτ dx − 3

4
c1(Q

2
ξ )τ − iρ

c1

2
T (Qξξτ ) +

ρ

2c1

(
σ2c

4
1 − σ1

)
Qξξξτ + O(ε).

4.3. Lump solutions of the ILW–BL and ILW–KP equations

We numerically investigate lump solutions of the ILW–BL equation (4.6), and compute
the resulting speed versus maximum amplitude curve. We also compute lumps to the
ILW–KP equation (4.9) assuming intermediate and deep bottom fluid layers (α = 1
and α = 10).

In (4.6), we move to a coordinate system travelling with velocity c in the x1-direction
(for convenience, we take zero velocity in the x2-direction). By taking ε = μ = γ 2,
ρ = 1/2, σ̃1 = 1, σ̃2 = 0, and α = 1, we obtain(

1

2
− c2

)
wx1x1

+
1

2
εwx2x2

+
3c

2
ε(w2)x1x1

− 1

2
εwx1x1x1x1

+
1

4
εi coth(D1)wx1x1x1

= 0,

(4.19)

where w = Qx1
. Assuming that c =

√
1/2 − cxε, (4.19) becomes, to leading order, the

ILW–KP equation

√
2cxwx1x1

+
1

2
wx2x2

+
3

2
√

2
(w2)x1x1

− 1

2
wx1x1x1x1

+
1

4
i coth(D1)wx1x1x1

= 0. (4.20)

We use the spectral renormalization (SPRZ) method (Ablowitz & Musslimani 2005)
to find lump solutions to (4.19) and (4.20) when ε = 1/10 and ε = 1/100. The SPRZ
method is explained in Appendix B. In (4.19) and (4.20), we take c = 1 − εcx and
cx = .5, 1, 1.5, . . . , 5.

Figure 2 shows the resulting speed versus maximum amplitude relationship when
ε = 1/10. The upper points in figure 2 correspond to solutions of the ILW–BL equation
(4.19), while the lower points correspond to solutions of the ILW–KP equation (4.20).
Each upper dot represents a point of the form (cx, wmax ), where wmax is the maximum
amplitude of the solution w(x, y) to (4.19) corresponding to c = 1 − εcx . Similarly,
each lower dot represents a point of the form (cx, wmax ), wmax is the maximum
amplitude of the solution to (4.20) corresponding to cx . We see from figure 2 that
the speed–amplitude curve for the ILW–KP equation is a straight line. In contrast,
the speed–amplitude curve for the ILW–BL equation begins to deviate markedly with
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Figure 3. The speed versus maximum amplitude relationship for (4.19) and (4.20) when ε =

1/100 and c = (1/
√

2)−cxε, with cx = .5, 1, 1.5, . . . , 5. Lower points correspond to (4.20), while
upper points correspond to (4.19)
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Figure 4. Maximum amplitude versus speed −c for α = 1 (lower line) and α =10
(upper line), i.e. the ILW–KP and ILW–BO regimes, respectively.

strong curvature from that of the ILW–KP (straight line) curve for speeds c away
from

√
1/2.

Figure 3 shows the resulting speed versus maximum amplitude relationship when
ε = 1/100. As in figure 2, upper points in figure 3 correspond to solutions of (4.19),
while the lower points correspond to solutions of (4.20). We see from figure 3 that the
speed–amplitude curve for the ILW–BL equation approaches that of the ILW–KP
equation for ε = 1/100.

In a similar manner, we now compute lump solutions to the ILW–KP equation
(4.9) for α = 1 and α = 10. In (4.9), we take ρ = 1/2, σ̃ = 1, and pass to a travelling
coordinate system moving with velocity c in the x1-direction. Figure 4 displays the
resulting speed versus amplitude relationship, which is linear in both cases. Note that
the horizontal axis in figure 4 is −c. Figures 5 and 6 display the x cross-sections
w(x, 0) and y cross-sections w(0, y), respectively, for a typical speed c = −1.5 and
α = 1.
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Figure 5. ILW–KP x cross-sections w(x, 0) for α = 1 (left figure) and α = 10 (right figure).
In each case, the speed c is −1.5.
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Figure 6. ILW–KP y cross-sections w(0, y) for α = 1 (left figure) and α = 10 (right figure).
In each case, the speed c is −1.5.

5. Conclusion
In this paper, we derived a NSP formulation for interfacial fluids with a free surface.

In this formulation, the kinematic conditions in the classic two-fluid equations are
replaced by a coupled system of three integral equations that depend on a free spectral
parameter, and relate the free interface and surface variables. By reformulating the
Bernoulli equations in terms of the interface and surface variables, a closed system is
obtained that serves as an alternative formulation of the classic two-fluid equations.
An advantage of the NSP equations is that the depth variable is removed.

In the first section, we presented a weak formulation of the two-fluid Euler
equations. Specifically, we obtained integral equations relating the free interface and
surface variables. We then analysed the connection between the NSP formulation and
the Dirichlet–Neumann operators associated with the two-fluid Euler equations. We
also related the weak formulation and the classic two-fluid equations. Additionally,
we used the adjoint properties of the Dirichlet–Neumann operators to obtain a dual
system of non-local equations. These dual equations are the formal adjoints of the
non-local spectral equations, and give another integral formulation of the two-fluid
problem. Finally, we demonstrated that the non-local spectral formulation captures
the kinematic conditions in the two-fluid equations. To this end, we reproduced from
the non-local formulation the series expansions of the Dirichlet–Neumann operators
associated with the two-fluid equations.

From the NSP formulation, we obtained what we call the ILW–BL equation, a
generalization of the BL equation to interfacial fluids with a free surface or rigid
lid. We also derived what we refer to as the ILW–KP equation, an asymptotically
distinguished (2+1) generalization of the intermediate long-wave equation, as well as
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higher order generalizations. We then computed lump-type solutions to the ILW–BL
and ILW–KP equations, and compared their resulting speed versus amplitude curves.
It is of interest that the speed–amplitude curve of the ILW–KP equation is linear,
which is also the case for the KP equation.

This work was partially supported by NSF grant DMS0604151.

Appendix A. Derivation of Dirichlet–Neumann series
In Craig et al. (2005a), series expansions for the Dirichlet–Neumann operators G(η)

and Gkl(β, η) are derived. Here we outline the derivation of the (2+1)-dimensional
versions of these series from (2.33) (the derivation for G(η) is analogous). The full
details can be found in Haut (2008).

In particular, we find expansions of the form

Gkl(η, β) =

∞∑
p,q=0

G
(p,q)
kl (η, β),

where the operators G
(p,q)
kl (η, β) are homogenous of degree (p, q). That is, for any

real numbers ε and δ,

G
(p,q)
kl (εη, δβ) = εpδqG

(p,q)
kl (η, β). (A 1)

To do so, first write out the matrix equation (2.33) as four equations:

−A11(η)G11(η, β) + A12(β)G21(η, β) = B11(η), (A 2)

−A21(η)G11(η, β) + A22(β)G21(η, β) = B21(η), (A 3)

−A11(η)G12(η, β) + A12(β)G22(η, β) = B12(β), (A 4)

−A21(η)G12(η, β) + A22(β)G22(η, β) = B22(β). (A 5)

Now expand the operators Aij and Bij about η = 0:

A11(η) =

∞∑
j=0

A
(j )
11 (η), A12(β) =

∞∑
j=0

A
(j )
12 (β), A21(η) =

∞∑
j=0

A
(j )
21 (η),

A22(β) =

∞∑
j=0

A
(j )
22 (β), B11(η) =

∞∑
j=0

B
(j )
11 (η), B12(β) =

∞∑
j=0

B
(j )
12 (β),

B21(η) =

∞∑
j=0

B
(j )
21 (η), B22(β) =

∞∑
j=0

B
(j )
22 (β),

where A
(j )
kl and B

(j )
kl are homogenous of degree j . In particular, a straightforward

calculation yields

A
(j )
11 (η) = −e−H |D| + (−1)j+1eH |D|

j!(eH |D| − e−H |D|)
(−1)j |D|jηj ,

A
(j )
12 (β) =

1 + (−1)j+1

2j!(eH |D| − e−H |D|)
|D|jβj ,

A
(j )
21 (η) = − 1 + (−1)j+1

2j!(eH |D| − e−H |D|)
|D|jηj ,

A
(j )
22 (β) =

e−H |D| + (−1)j+1eH |D|

j!(eH |D| − e−H |D|)
|D|jβj ,
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and

B
(j )
11 (η) = −eH |D| + (−1)je−H |D|

j!(eH |D| − e−H |D|)
|D|j−1(D1η

jD1 + D2η
jD2),

B
(j )
12 (β) =

1 + (−1)j

j!2(eH |D| − e−H |D|)
|D|j−1(D1β

jD1 + D2β
jD2),

B
(j )
21 (β) = − 1 + (−1)j

j!2(eH |D| − e−H |D|)
|D|j−1(D1η

jD1 + D2η
jD2),

B
(j )
22 (η) =

eH |D| + (−1)je−H |D|

j!(eH |D| − e−H |D|)
|D|j−1(D1β

jD1 + D2β
jD2).

Putting the expansions for Akl , Bkl and Gkl into (A 2)–(A 5), replacing η by εη and
β by δβ and equating coefficients of εpδq yield the desired recursion relations for
G

p,q
kl (η, β).
When p + q = 0,(

G
(0,0)
11 (η, β) G

(0,0)
12 (η, β)

G
(0,0)
21 (η, β) G

(0,0)
22 (η, β)

)
=

(
|D| coth(|D|H ) −|D| csch(|D|H )

−|D| csch(|D|H ) |D| coth(|D|H )

)
.

Now assuming that p + q = m, one can express G
(p,q)
kl in terms of G

(r,s)
kl , when

r + s < m. For brevity, we only consider when p + q = m and p, q �= 0, although the
other cases are similar. From (A 2)–(A 5) we equate all terms of degree εpδq to get

−
p∑

j=0

A
(p−j )
11 (η)G(j,q)

11 (η, β) +

q∑
j=0

A
(q−j )
12 (β)G(p,j )

21 (η, β) = 0,

−
p∑

j=0

A
(p−j )
21 (η)G(j,q)

11 (η, β) +

q∑
j=0

A
(q−j )
22 (β)G(p,j )

21 (η, β) = 0,

−
p∑

j=0

A
(p−j )
11 (η)G(j,q)

12 (η, β) +

q∑
j=0

A
(q−j )
12 (β)G(p,j )

22 (η, β) = 0,

−
p∑

j=0

A
(p−j )
21 (η)G(j,q)

11 (η, β) +

q∑
j=0

A
(q−j )
22 (β)G(p,j )

21 (η, β) = 0.

Using that A
(0)
11 = A

(0)
22 = −I, where I is the identity operator, and A

(0)
21 = A

(0)
12 = 0, the

previous four equations give us G
(p,q)
kl in terms of G

(r,s)
kl , when r + s < m:

G
(p,q)
11 (η, β) =

p−1∑
j=0

A
(p−j )
11 (η)G(j,q)

11 (η, β) −
q−1∑
j=0

A
(q−j )
12 (β)G(p,j )

21 (η, β), (A 6)

G
(p,q)
21 (η, β) = −

p−1∑
j=0

A
(p−j )
21 (η)G(j,q)

11 (η, β) +

q−1∑
j=0

A
(q−j )
22 (β)G(p,j )

21 (η, β), (A 7)

G
(p,q)
12 (η, β) =

p−1∑
j=0

A
(p−j )
11 (η)G(j,q)

12 (η, β) −
q−1∑
j=0

A
(q−j )
12 (β)G(p,j )

22 (η, β), (A 8)

G
(p,q)
22 (η, β) = −

p−1∑
j=0

A
(p−j )
21 (η)G(j,q)

12 (η, β) +

q−1∑
j=0

A
(q−j )
22 (β)G(p,j )

22 (η, β) . (A 9)



A reformulation and applications of interfacial fluids with a free surface 395

Finally, we need to take the adjoint equations (A 6)–(A 9) to relate them to Craig
et al. (2005a). For example, taking the adjoint of (A 6) is

G
(p,q)
11 (η, β) =

p−1∑
j=0

G
(j,q)
11 (η, β)A(p−j )

11 (η)
∗ −

q−1∑
j=0

G
(p,j )
12 (η, β)A(q−j )

12 (β)
∗
,

where

A
(j )
11 (η)

∗
= −ηj e−H |D| + (−1)j+1eH |D|

j!(eH |D| − e−H |D|)
|D|j ,

A
(j )
12 (β)

∗
= βj 1 + (−1)j+1

j!2(eH |D| − e−H |D|)
|D|j .

Appendix B. Spectral renormalization method
For concreteness, we discuss how to apply the SPRZ method to compute modes

for (4.19).
First take the Fourier transform of (4.19) and rearrange the equation to get

ŵ =
−(3/2)k2

1

( 1
2

− c2)k2
1 + 1

2
εk2

2 + 1
2
εk4

1 − 1
4
εk3

1 coth(k1)
ŵ2. (B 1)

If 1 − c2 > 0, then the denominator in the previous equation is zero only when k1 =
k2 = 0.

In general, we cannot find a solution to (B 1) by naive iteration. Instead, we assume
that w = λv, where λ is an unknown parameter and v is an unknown function (this
step is the renormalization part). Then (B 1) can be written in terms of λ and v as

v̂ = λ
−(3/2)k2

1

( 1
2

− c2)k2
1 + 1

2
εk2

2 + 1
2
εk4

1 − 1
4
εk3

1 coth(k1)
v̂2. (B 2)

Note that by multiplying (B 2) by v̂ (where v̂ denotes the conjugate of v̂ ), rearranging,
and integrating the result we get

λ = −
∫

R2

(
( 1

2
− c2)k2

1 + 1
2
εk2

2 + 1
2
εk4

1 − 1
4
εk3

1 coth(k1)
)
v̂v̂ dk∫

R2 (3/2)k2
1 v̂

2v̂ dk
. (B 3)

Finally, we use (B 2) and (B 3) for our SPRZ scheme:

v̂n+1 = −λn+1

(3/2)k2
1

( 1
2

− c2)k2
1 + 1

2
εk2

2 + 1
2
εk4

1 − 1
4
εk3

1 coth(k1)
v̂n

2, (B 4)

λn+1 = −
∫

R2

(
( 1

2
− c2)k2

1 + 1
2
εk2

2 + 1
2
εk4

1 − 1
4
εk3

1 coth(k1)
)
v̂nv̂n dk∫

R2 (3/2)k2
1 v̂n

2v̂n dk
. (B 5)
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